What is volume

Volume is the amount of space contained within a shape. For example, how much water a box can store or how much water in a swimming pool Volume is about what fits inside/how much space an object has which is known as capacity.
It is important to find understand what a cross section is. A cross section is like a view into the inside of something made by cutting through it. For example, this is a cross-section of a
tomato.

What is depth? How far back a shape goes.
Volume $=$ area cross section x depth

Shape
Cuboid/
Cube

You are never asked to find the surface area of a frustrum, but it has been included for completeness. You only have to know how to find the volume.

If given H and $\boldsymbol{h}: \frac{1}{3} \pi R^{2}(H+h)-\frac{1}{3} \pi r^{2} h$ Use similar triangles if not give one of the radii. This should make sense as it is the area of the bigger cone take away the area of the smaller cone.
If not given $\boldsymbol{h}: \frac{1}{3} \pi H\left(R^{2}+R r+r^{2}\right)$
Like with a cone, the cross sections are not the same throughout the shape, so we cannot use the formula area of a circle \times depth.

$$
\frac{4}{3} \pi r^{3}
$$

or any sphere covers four drawn
However, we can do the following. Take an orange. Cut the orange in half. Using one half of the orange only, draw four circles around it on a single piece of paper. Peel all of the orange and place all the peeled pieces in each of the circles

out circles.

$4 \times$ area of the circle $=4$ oranges $=4 \pi r^{2}$
 $4 \pi r^{2}$

Hemi-	
Sphere	

Watch out for hemispheres! When we half a sphere we must also add on the circle that we expose by cutting it. The green circle below is now covering the outside of the shape.

$$
\begin{gathered}
\frac{4 \pi r^{2}}{2}+\pi r^{2}=3 \pi r^{2} \\
3 \pi r^{3}
\end{gathered}
$$

area of base rectangle $\boldsymbol{+}$ area of pink triangle $\boldsymbol{+}$ area of blue triangle+ area of purple triangle $\boldsymbol{+}$ area of yellow triangle

$$
=b c+\frac{1}{2} a s_{2}+\frac{1}{2} a s_{2}+\frac{1}{2} a s_{1}+\frac{1}{2} a s_{1}
$$

or even an irregular base such a wobbly one!
The volume is still given by $\frac{1}{3}$ (area of base) \times height
Note: You'll need to use 3 D trig knowledge to find the
height of a pyramid if not given it
$\frac{1}{3}$ (base area) (height)
Did you know that the volume of a pyramid also
applies to the volume of a cone? $=\frac{1}{3}\left(\pi r^{2}\right) h$

Some cool facts:

 the volume and the derivative of the volume gives you the surface area

$$
\int \text { surface area of a sphere }=\int 4 \pi r^{2} d r=\frac{4 \pi r^{3}}{3}=\text { volume of a sphere } \quad \text { and } \quad \text { derivative of volume of a sphere }=\frac{d}{d r}\left(\frac{4 \pi r^{3}}{3}\right)=4 \pi r^{2}=\operatorname{surface} \text { area of a sphere }
$$

Going off topic from 3D shapes, did you know that you can do the same thing for 2D shapes with the area of a circle to get the circumference? $A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r$
Another cool fact: The volume of a cone + volume of sphere = volume of a cylinder (if all 3 shapes have the same height and diameter of course)
\square $=$

Find the surface area and volume of the following shape

Answer

The surface area is the area of every side added together.
Imagine every side laid flat and add up all their individual areas

This is the area of 2 trapezia + area of 4 rectangles

The 2 trapezia are located at the front and back and the 4 rectangles are located on the left, right, top and bottom

$$
\begin{aligned}
=\frac{1}{2}(5+10)(6)+ & \frac{1}{2}(5+10)(6)+4(17)+7(17) \\
& +5(17)+10(17) \\
& =532 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of cross section $=$ area of blue shaded
trapezium $=\frac{1}{2}(5+10)(6)=45 \mathrm{~cm}^{2}$
area of cross section \times depth

$$
=45 \times 17=765 \mathrm{~cm}^{3}
$$

The diagram shows a prism with length 22 cm . The cross section of the prism is a right-angled triangle with sides 2 cm and 5 cm .

i. Calculate the total surface area of the prism
ii. Calculate the volume of the prism

Answer

Surface area:

The surface area is the area of every side added together. Imagine every side laid flat and add up all their individual areas

This is the area of 2 identical triangles + area of 3 different rectangles

We don't have the base of the triangle
We need to use Pythagoras to find the base

$$
\text { base }=\sqrt{5^{2}-2^{2}}=\sqrt{21}
$$

Surface area $=\frac{1}{2}(\sqrt{21})(2)+\frac{1}{2}(\sqrt{21})(2)+\sqrt{21}(22)+$ $2(22)+5(22)$

$$
=264.0 \mathrm{~cm}^{2}
$$

Volume:

Area of cross section $=$ area of blue shaded
triangle $=\frac{1}{2}(\sqrt{21})(2)=\sqrt{21} \mathrm{~cm}^{2}$
Volume $=$ area of cross section \times depth

$$
=\sqrt{21} \times 22=100.8 \mathrm{~cm}^{3}
$$

Let's colour code the cross section for ease of explaining the area of it

Area of cross section $=$ area of blue shaded rectangle plus area of green shaded rectangle $=7(4)+5(2)=38 \mathrm{~cm}^{2}$
Volume $=$ area of cross section \times depth $=38 \times 10=380 \mathrm{~cm}^{3}$

Area of cross section $=$ area of entire pink rectangle - area of mini pink rectangle $=7(5)-3(2)=29 \mathrm{~cm}^{2}$
Volume $=$ area of cross section \times depth $=29 \times 9=261 \mathrm{~cm}^{3}$

Area of cross section $=$ area of blue shaded semi-circle + area of green shaded rectangle $=\frac{1}{2} \pi(30)^{2}+60(45)=4113.7 \mathrm{~cm}^{2}$ Volume $=$ area of cross section \times depth $=4113.7176 \times 90=370,234.5 \mathrm{~cm}^{3}$

Area of cross section $=$ area of blue shaded square + area of green shaded trapezium $=12(12)+\frac{1}{2}(12+22)(8)=280 \mathrm{~cm}^{2}$ Volume $=$ area of cross section \times depth $=280 \times 80=22,4000 \mathrm{~cm}^{3}$

Here we don't care about the light blue base for the cylinder and need to take off the base of the cylinder when we find the area of the top of the cube

Surface area $=$ area of dark blue top of cube + light blue cylinder +5 sides of pink box

$$
=\left(8.7^{2}-\pi(2.7)^{2}\right)+\left(\pi(2.7)^{2}+2 \pi(2.7)(4.9)+5\left(8.7^{2}\right)=537 \mathrm{~cm}^{2}\right.
$$

Note: You could have done this quicker by realising that all we need to do is add the full cube surface area and the curved surface area of the cylinder. The missing base of the cylinder cancels out with the exposed top of the cylinder.

$$
6\left(8.7^{2}\right)+2 \pi(2.7)(4.9)=537 \mathrm{~cm}^{2}
$$

i.

The surface area is the area of every side added together. Imagine every side laid flat and add up all their individual areas. The green shaded region becomes a rectangle when laid flat. It general when we unfold a cylinder it looks like:

Surface Area $=$ area of green shaded circle + area of blue shaded circle + area of pink shaded rectangle

$$
=\pi(7.5)^{2}+\pi(7.5)^{2}+2 \pi(7.5)(26)=1578.7 \mathrm{~cm}^{2}
$$

Note: You also learn the formula $2 \pi r^{2}+2 \pi r h$ for the surface area of a cylinder which you could memorise and have used straight away instead
ii.

Area of cross section $=$ area of green shaded circle $=\pi(7.5)^{2}=176.715 \mathrm{~cm}^{2}$
Volume $=$ area of cross section \times depth $=176.715 \times 26=4594.6 \mathrm{~cm}^{3}$

Note: You also learn the formula $\pi r^{2} h$ for the surface area of a cylinder which you could memorise and have used straight away instead

The diagram shows a solid hemisphere of radius 5 .

Find the total surface area and volume of the solid hemisphere.

The circle at the base is easy and just πr^{2}, but the pink curved part takes a bit longer to find. Instead, you're meant to memorise the formula for a sphere: $4 \pi r^{2}$

Here we want a hemisphere though to we half the area: $\frac{4 \pi r^{2}}{2}=2 \pi r^{2}$

The problem is that when we have the hemisphere we expose the green circle

So, we need to add it back on. Surface area of a hemisphere is $2 \pi r^{2}+\pi r^{2}=3 \pi r^{2}$

Here we have $r=5$

$$
\begin{aligned}
& \text { Surface area }=3 \pi(5)^{2}= \\
& 235.6 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the surface area and volume of the following

| Volume | Surface Area
 volume $=\frac{4}{3} \pi(3)^{3}$
 4$=\frac{1}{3} \pi(3)^{3}=9 \pi$ |
| :---: | :---: |\quad| Notice how we expose 2 semi circles that weren't there |
| :--- |
| before |
| surface area $=\frac{4 \pi r^{2}}{4}+\frac{\pi r^{2}}{2}+\frac{\pi r^{2}}{2}=2 \pi r^{2}$ |

Find the volume of the frustrum

Since we are given the dimensions of both cones we can use the fact that it is volume of the bigger cone minus the volume of the smaller cone, so all you need to know is the formula for the volume of a cone $\frac{1}{3} \pi r^{2} h$

Here it looks like we don't have enough info as the radius of the cone is missing. We use similar shapes to get r. These shapes are similar so

$$
\begin{gathered}
\qquad \begin{array}{c}
\frac{40}{15}=\frac{20}{r} \\
40 r=300 \\
r=7.5
\end{array} \\
\text { Volume }=\frac{1}{3} \pi(15)^{2}(40)-\frac{1}{3} \pi(7.5)^{2}(20)=5890.2 \mathrm{~cm}^{3}
\end{gathered}
$$

What happens when we have two shapes together such as cones, spheres or cylinders?

Find the surface area and volume of the following shape:

When finding surface area remember that the circle of the cone is not exposed and neither is the circle of the hemisphere

$$
\begin{aligned}
& \text { Total surface area }=\pi r l+2 \pi r^{2}=\pi(7) \sqrt{274}+2 \pi(7)^{2}=671.9 \mathrm{~cm}^{2} \\
& \text { Total volume }=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}=\frac{1}{3} \pi(7)^{2}(15)+\frac{2}{3} \pi(7)^{3}=1488.1 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume is everything inside the shape.

Working backwards:

Sometimes we are given the volume/surface area of the of the shape. We can use this to work backwards and solve for r (or another unknown). Once we have r we can find the volume of the hemisphere and then add the volume together to find the total volume.

Shape S is one quarter of a solid sphere, centre O. The volume of S is $576 \pi \mathrm{~cm}^{3}$

Shape of S
Notice how we expose 2 semi circles that weren't there before

$$
\text { surface area }=\frac{4 \pi r^{2}}{4}+\frac{\pi r^{2}}{2}+\frac{\pi r^{2}}{2}=2 \pi r^{2}
$$

$$
\text { volume }=\frac{\frac{4}{3} \pi r^{3}}{4}=\frac{1}{3} \pi r^{3}
$$

The water is poured into a hollow cone.
The depth of the water is the cone is 12 cm .
Work out the radius of the surface of the water in the cone.
volume of sphere $=\frac{4}{3} \pi\left(6^{3}\right)=288 \pi$
Volume of hemisphere $=\frac{288 \pi}{2}=144 \pi$
Volume of Water in hemisphere $=\frac{2}{5}(144 \pi)=\frac{288}{5} \pi$
Volume of water in cone is also $\frac{288}{5} \pi$
$\frac{1}{3} \pi r^{2}(12)=\frac{288}{5} \pi$
$4 r^{2}=\frac{288}{5}$
$r^{2}=14.4$
$r=3.80$

We know l so lets fill this in and then use algebra to solve for r

$$
\begin{gathered}
\pi r(4)+\pi r^{2}=\frac{33}{4} \pi \\
4 \pi r+\pi r^{2}=\frac{33}{4} \pi \\
4 r+r^{2}=\frac{33}{4} \\
4 r+r^{2}=\frac{33}{4} \\
4 r^{2}+16 r-33=0 \\
(2 r+11)(2 r-3)=0 \\
r \neq-\frac{11}{2}, r=\frac{3}{2}
\end{gathered}
$$

Surface area of hemisphere $=2 \pi r^{2}$
Surface area of cylinder $=2 \pi r h+\pi r^{2}$ (note: it is not πr^{2} since only the dark green circle is exposed, not the light pink)

We are given the surface area of the hemisphere and can work backwards to find r :

$$
\begin{gathered}
2 \pi r^{2}=32 \pi \\
2 r^{2}=32 \\
r^{2}=16
\end{gathered}
$$

Total surface area $=2 \pi r^{2}+2 \pi r h+\pi r^{2}=32 \pi+2 \pi(4)(10)+\pi(4)^{2}=32 \pi+80 \pi+16 \pi=128 \pi$

The solid shape is made from a hemisphere and a cone.

The radius of the hemisphere is equal to the radius of the cone
The cone has a height of 10 cm
The volume of the cone is $270 \pi \mathrm{~cm}^{3}$
Work out the total volume of the solid shape
Give your answer in terms of π

Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{2}(10)=\frac{10}{3} \pi r^{2}$. We now need to solve for r.

$$
\begin{aligned}
\frac{10}{3} \pi r^{2} & =270 \pi \\
\frac{10}{3} r^{2} & =270 \\
r^{2} & =81 \\
r & =9
\end{aligned}
$$

Volume of a cone $=\frac{10}{3} \pi(9)^{2}=270 \pi$
Volume of a hemisphere $=\frac{2}{3} \pi r^{3}=\frac{2}{3} \pi(9)^{3}=486 \pi$
Total volume $=270 \pi+486 \pi=756 \pi$

Algebraic Side Lengths:

The diagram below shows a cylinder and a sphere. The radius of the base of the cylinder is $2 x \mathrm{~cm}$ and the height of the cylinder is hcm . The radius of the sphere $3 x \mathrm{~cm}$. The volume of the cylinder is equal to the volume of the sphere.

Express h in terms of x
Volume of cylinder $=\pi r^{2} h=\pi(2 x)^{2}(h)=\pi(4 x)(h)=4 \pi h x^{2}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(3 x)^{3}=\frac{4}{3} \pi\left(27 x^{3}\right)$
Volumes are equal $\Rightarrow 4 \pi h x^{2}=\frac{4}{3} \pi\left(27 x^{3}\right)$
Cancel the π on both sides

$$
\begin{gathered}
4 h x^{2}=\frac{4}{3}\left(27 x^{3}\right) \\
4 h x^{2}=36 x^{3} \\
4 h=36 x \\
h=9 x
\end{gathered}
$$

The diagram shows a solid metal cylinder

The cylinder has a base radius $3 x \mathrm{~cm}$ and height hcm
The metal cylinder is melted
All the meta is then used to make 270 spheres
Each sphere has a radius of $\frac{1}{2} x \mathrm{~cm}$
Find, an expression, in its simplest form, for h in terms of x

The diagram shows a solid metal cylinder.

The cylinder has a base radius $2 x$ and a height $9 x$
The cylinder is melted down and made into a sphere of radius
Find an expression for r in terms of x

Volume of cylinder $=\pi r^{2} h$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Volume of cylinder = volume of sphere
$\pi r^{2} h=\frac{4}{3} \pi r^{3}$
Plug in dimensions given
$\pi(2 x)^{2}(9 x)=\frac{4}{3} \pi r^{3}$
$\pi\left(4 x^{2}\right)(9 x)=\frac{4}{3} \pi r^{3}$
$\left(4 x^{2}\right)(9 x)=\frac{4}{3} r^{3}$
$36 x^{3}=\frac{4}{3} r^{3}$
$108 x^{3}=4 r^{3}$
$r^{3}=27 x^{3}$
$r=\sqrt[3]{27 x^{3}}$
$r=3 x$

Two solid spheres, each of radius rcm , fit exactly inside a hollow cylinder

The radius of the cylinder is $r \mathrm{~cm}$
The height of the cylinder is equal to $4 r \mathrm{~cm}$
The volume of the space inside the cylinder, not occupied by the spheres is $\frac{125}{6} \pi \mathrm{~cm}^{3}$
Calculate the value of r

$$
\begin{aligned}
& \text { Volume of cylinder }=\pi r^{2} h=\pi r^{2}(4 r)=4 \pi r^{3} \\
& \text { Volume of } 2 \text { spheres }=2\left(\frac{4}{3} \pi r^{3}\right)=\frac{8}{3} \pi r^{3} \\
& \text { Unoccupied space }=4 \pi r^{3}-\frac{8}{3} \pi r^{3} \\
& 4 \pi r^{3}-\frac{8}{3} \pi r^{3}=\frac{125}{6} \pi \\
& 4 r^{3}-\frac{8}{3} r^{3}=\frac{125}{6} \\
& 12 r^{3}-8 r^{3}=\frac{125}{2} \\
& 4 r^{3}=\frac{125}{2} \\
& r^{3}=\frac{125}{8} \\
& r=\sqrt[3]{\frac{125}{8}} \\
& r=\frac{\sqrt[3]{125}}{\sqrt[3]{8}}=\frac{5}{2}
\end{aligned}
$$

The radius of the hemisphere is rcm

The radius of the base of the cone is $3 r \mathrm{~cm}$
The height of the cone is $4 r \mathrm{~cm}$
The volume of the solid shape is $330 \pi \mathrm{~cm}^{3}$
Find the value of r in the form $\sqrt[3]{n}$, where n is an integer

volume of cone $=\frac{1}{3} \pi r^{2} h$
volume of hemisphere $=\frac{2}{3} \pi r^{3}$
volume of cone + volume of hemisphere= Total volume
$\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}=330 \pi$
Plug in the dimensions given in the question
$\frac{1}{3} \pi(3 r)^{2}(4 r)+\frac{2}{3} \pi(3 r)^{3}=330 \pi$
$\frac{1}{3}(3 r)^{2}(4 r)+\frac{2}{3}(3 r)^{3}=330$
$\frac{1}{3}\left(9 r^{2}\right)(4 r)+\frac{2}{3}\left(27 r^{3}\right)=330$
$\left(9 r^{2}\right)(4 r)+2\left(27 r^{3}\right)=990$
$36 r^{3}+54 r^{3}=990$
$90 r^{3}=990$
$r^{3}=11$
$r=\sqrt[3]{11}$

The diameter of the base of the cone is $10 a \mathrm{~cm}$. The height of the cone is $12 a . \mathrm{cm}$. The total surface area of the cone is $810 \pi \mathrm{~cm}^{2}$. The volume of the cone is $k \pi \mathrm{~cm}^{3}$, where k is an integer. Find k

Surface area of a cone: $\pi r^{2}+\pi r l$
We need to use Pythagoras to find l first:

$$
\begin{gathered}
(12 a)^{2}+(5 a)^{2}=l^{2} \\
144 a^{2}+25 a^{2}=l^{2} \\
169 a^{2}=l^{2} \\
l^{2}=169 a^{2} \\
l=13 a \\
25 a^{2} \pi+65 a^{2} \pi=810 \pi \\
25 a^{2}+65 a^{2}=810 \\
90 a^{2}=810 \\
a^{2}=9 \\
a=3
\end{gathered}
$$

Surface area: $\pi(5 a)^{2}+\pi(5 a)(13 a)=810 \pi$

Now that we know a we can easily find the volume. The radius is $5(3)=15$ and the height is $12(3)=36$

$$
\begin{gathered}
\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(15)^{2}(36)=2700 \pi \\
k=2700
\end{gathered}
$$

The diagram shows a solid cone and solid hemisphere

The cone has a base of radius $x \mathrm{~cm}$ and a height of h cm
The hemisphere has a base of radius $x \mathrm{~cm}$
The surface area of the cone is equal to the surface area of the hemisphere
Find an expression for h in terms of x

Surface area of cone $=\pi r l+\pi r^{2}$
Surface area of hemisphere $=2 \pi r^{2}+\pi r^{2}$

Surface area of cone $=$ Surface area of hemisphere
$\pi r l+\pi r^{2}=2 \pi r^{2}+\pi r^{2}$
Plug in the dimensions given in the question
We need to find l first

$l^{2}=x^{2}+h^{2}$
$l=\sqrt{x^{2}+h^{2}}$
We can plug in now
$\pi(x) \sqrt{x^{2}+h^{2}}+\pi(x)^{2}=2 \pi(x)^{2}+\pi(x)^{2}$
$x \sqrt{x^{2}+h^{2}}+x^{2}=2 x^{2}+x^{2}$
$x \sqrt{x^{2}+h^{2}}+x^{2}=3 x^{2}$
$x \sqrt{x^{2}+h^{2}}=2 x^{2}$
$\sqrt{x^{2}+h^{2}}=2 x$
$x^{2}+h^{2}=4 x^{2}$
$h^{2}=3 x^{2}$
$h=\sqrt{3 x^{2}}$
$h=\sqrt{3} x$

Some plasticine is used to make a solid cylinder of base radius rcm and height h cm

Diagram NOT accurately drawn

The plasticine is then split in half and used to make two identical cones. Each cone has base radius $2 r \mathrm{~cm}$ and height H cm
Express H in terms of $h .$. Give your answer in its simplest form
Volume of cylinder $=\pi r^{2} h$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of cylinder is 2 times the volume of the cone
$\pi r^{2} h=2\left(\frac{1}{3} \pi r^{2} h\right)$
Plug in the dimensions given in the question
$\pi r^{2} h=\frac{2}{3} \pi(2 r)^{2}(H)$
$\pi r^{2} h=\frac{2}{3} \pi\left(4 r^{2}\right)(H)$
$r^{2} h=\frac{2}{3}\left(4 r^{2}\right)(H)$
$r^{2} h=\frac{8}{3}\left(r^{2}\right)(H)$
$3 r^{2} h=8 r^{2} H$
$8 r^{2} H=3 r^{2} h$
$H=\frac{3 r^{2} h}{8 r^{2}}$
$H=\frac{3}{8} h$

The diagram shows a solid cone

The diameter of the base of the cone is $24 x \mathrm{~cm}$
The height of the cone is $16 x \mathrm{~cm}$
The curved surface area of the cone is $2106 \pi \mathrm{~cm}^{3}$
The volume of the cone is $\mathrm{V} \pi \mathrm{cm}^{3}$, where V is an integer
Find the value of V

We need x in order to find the volume. We need to find l before we can find x.
We can find l using Pythagroas

$$
\begin{aligned}
& (12 x)^{2}+(16 x)^{2}=l^{2} \\
& 144 x^{2}+256 x^{2}=l^{2} \\
& 400 x^{2}=l^{2} \\
& l=20 x
\end{aligned}
$$

We can use the fact that we know the curved surface area to find x
curved surface area $=\pi r l=2160 \pi$
$\pi(12 x)(20 x)=2160 \pi$
$240 x^{2}=2160$
$x^{2}=9$
$x=3$

Now we know x we can find the volume of the cone

$$
\text { Volume of cone } \frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(12 x)^{2}(16 x)=\frac{1}{3} \pi(12 \times 3)^{2}(16 \times 3)=20736 \pi
$$

The diagram shows a solid cylinder and a solid sphere

The cylinder has radius r
The sphere has radius r
Given that $\frac{\text { total surface area of cylinder }}{\text { surface area of sohere }}=2$
Find the value of $\frac{\text { volme of cylinder }}{\text { volume of sphere }}$
$\frac{\text { total surface area of cylinder }}{\text { surface area of sphere }}=\frac{2 \pi r h+2 \pi r^{2}}{4 \pi r^{2}}=2$

$$
\begin{gathered}
\frac{2 r h+2 r^{2}}{4 r^{2}}=2 \\
\frac{2 h+2 r}{4 r}=2 \\
2 h+2 r=8 r \\
2 h=6 r \\
h=3 r
\end{gathered}
$$

$$
\frac{\text { volme of cylinder }}{\text { volume of sphere }}=\frac{\pi r^{2} h}{\frac{4}{3} \pi r^{3}}=\frac{\pi r^{2}(3 r)}{\frac{4}{3} \pi r^{3}}=\frac{3 r^{3}}{\frac{4}{3} r^{3}}=\frac{3}{\frac{4}{3}}=3 \div \frac{4}{3}=3 \times \frac{3}{4}=\frac{9}{4}
$$

A solid is made by putting a hemisphere on top of a cone

The total height of the solid is $5 x$
The radius of the base of the cone is x
The radius of the hemisphere is x

A cylinder has the same volume as the solid
The cylinder has radius $2 x$ and height h
All measurements are in centimetres
Find a formula for h in terms of x

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of hemisphere $=\frac{2}{3} \pi r^{3}$
Volume of cylinder $=\pi r^{2} h$
volume of cone + volume of hemisphere $=$ volume of a cylinder
$\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}=\pi r^{2} h$
Plug in the dimensions given in the question
$\frac{1}{3} \pi x^{2}(4 x)+\frac{2}{3} \pi x^{3}=\pi(2 x)^{2} h$

$$
\begin{aligned}
& \frac{1}{3} x^{2}(4 x)+\frac{2}{3} x^{3}=(2 x)^{2} h \\
& \frac{4}{3} x^{2}(x)+\frac{2}{3} x^{3}=4 x^{2} h \\
& 4 x^{2}(x)+2 x^{3}=3\left(4 x^{2} h\right) \\
& 6 x^{3}=12 x^{2} h \\
& 12 x^{2} h=6 x^{3} \\
& h=\frac{6 x^{3}}{12 x^{2}} \\
& h=\frac{x}{2}
\end{aligned}
$$

